167 research outputs found

    60 GHz Wireless Propagation Channels: Characterization, Modeling and Evaluation

    Get PDF
    To be able to connect wirelessly to the internet is nowadays a part of everyday life and the number of wireless devices accessing wireless networks worldwide are increasing rapidly. However, with the increasing number of wireless devices and applications and the amount available bandwidth, spectrum shortage is an issue. A promising way to increase the amount of available spectrum is to utilize frequency bands in the mm-wave range of 30-300 GHz that previously have not been used for typical consumer applications. The 60 GHz band has been pointed out as a good candidate for short range, high data rate communications, as the amount of available bandwidth is at least 5 GHz worldwide, with most countries having 7 GHz of bandwidth available in this band. This large bandwidth is expected to allow for wireless communication with bit rates up to 7 Gbit/s, which can be compared to the typical WLAN systems of today that typically provide bit rates up to 0.6 Gbit/s. However, the performance of any wireless system is highly dependent on the properties and characteristics of the wireless propagation channel. This thesis focuses on indoor short range wireless propagation channels in the 60 GHz band and contains a collection of papers that characterizes, models and evaluates different aspects that are directly related to the propagation channel properties. Paper I investigates the directional properties of the indoor 60 GHz wireless radio channel based on a set of indoor measurements in a conference room. In the paper, the signal pathways and propagation mechanisms for the strongest paths are identified. The results show that first and second order interactions account for the major contribution of the received power. The results also show that finer structures, such as ceiling lamps, can be significant interacting objects. Paper II presents a cluster-based double-directional channel model for 60 GHz indoor multiple-input multiple-output (MIMO) systems. This paper is a direct continuation of the results in paper I. The model supports arbitrary antenna elements and array configurations and is validated against measurement data. The validation shows that the channel model is able to efficiently reproduce the statistical properties of the measured channels. The presented channel model is also compared with the 60 GHz channel models developed for the industry standards IEEE802.15.3c and IEEE802.11ad. Paper III characterizes the effect of shadowing due to humans and other objects. Measurements of the shadowing gain for human legs, metallic sheets, as well as metallic and plastic cylinders are presented. It is shown that the shadowing gain of these objects are fairly similar and that the shadowing due to the metal cylinder can be determined based on the geometrical theory of diffraction. Next, the shadowing due to a water-filled human body phantom is compared with the shadowing due to real humans. The results show that the water-filled phantom has shadowing properties similar to those of humans and is therefore suitable for use in 60 GHz human body shadowing measurements. Paper IV presents a novel way of estimating the cluster decay and fading. Previously, the cluster decay has usually been determined by performing a simple linear regression, without considering the effects of the noise floor and cluster fading. The paper presents an estimation method which takes these effects into account and jointly estimates both the cluster decay and cluster fading. It is shown that this estimation method can greatly improve the estimated parameters. Paper V evaluates the capacity improvement capability of spatial multiplexing and beamforming techniques for 60 GHz systems in an indoor environment. In this paper, beamforming refers to conventional gain focusing in the direction of the strongest propagation path. The paper uses a capacity metric that only depends on the multi-path richness of the propagation channel and the antenna aperture size. In the paper, it is shown that, when the link budget is limited due to electrically small antennas and long Tx-Rx separation distances, beamforming approximates the capacity of spatial multiplexing. However, spatial multiplexing is a worthwhile option when Rx SNR is favorable and a higher peak data rate is required. Paper VI describes different methods for the clustering of wireless multi-path components. In the literature, the clustering method that is predominantly used is the K-means algorithm, or a power-weighted version of K-means, called K-power means. In this paper, we point out that K-means is a special case of a Gaussian mixture model (GMM). The paper presents a clustering method based on a GMM. This method is able to handle arbitrary cluster spreads in the different dimensions better than the K-means algorithm. A power-weighted version of the GMM is also presented. In addition to this, a mixture model based on asymmetric Laplace distributions is also presented, with and without power-weighting. Paper VII is based on channel measurements in a small and a large room, where the Tx and Rx arrays have dual polarized elements. Using these measurements, the cross-polarization ratio (XPR) of the multi-path components are characterized. This gives valuable information on how the MPCs are affected by the propagation channel. A statistical description of the XPR is also needed for the development of a propagation channel model that supports polarization. The paper also investigates the eigenvalue spreads for single and dual polarized elements. Furthermore, the measurements include LOS and NLOS measurement, where the NLOS scenarios include water-filled human presented in paper III. The results show that the capacity can be greatly improved if dual-polarized elements are used, and that the XPR values are in general higher compared to lower frequencies

    The COST IRACON Geometry-based Stochastic Channel Model for Vehicle-to-Vehicle Communication in Intersections

    Full text link
    Vehicle-to-vehicle (V2V) wireless communications can improve traffic safety at road intersections and enable congestion avoidance. However, detailed knowledge about the wireless propagation channel is needed for the development and realistic assessment of V2V communication systems. We present a novel geometry-based stochastic MIMO channel model with support for frequencies in the band of 5.2-6.2 GHz. The model is based on extensive high-resolution measurements at different road intersections in the city of Berlin, Germany. We extend existing models, by including the effects of various obstructions, higher order interactions, and by introducing an angular gain function for the scatterers. Scatterer locations have been identified and mapped to measured multi-path trajectories using a measurement-based ray tracing method and a subsequent RANSAC algorithm. The developed model is parameterized, and using the measured propagation paths that have been mapped to scatterer locations, model parameters are estimated. The time variant power fading of individual multi-path components is found to be best modeled by a Gamma process with an exponential autocorrelation. The path coherence distance is estimated to be in the range of 0-2 m. The model is also validated against measurement data, showing that the developed model accurately captures the behavior of the measured channel gain, Doppler spread, and delay spread. This is also the case for intersections that have not been used when estimating model parameters.Comment: Submitted to IEEE Transactions on Vehicular Technolog

    Statistical Modeling and Estimation of Censored Pathloss Data

    Get PDF
    Pathloss is typically modeled using a log-distance power law with a large-scale fading term that is log-normal. However, the received signal is affected by the dynamic range and noise floor of the measurement system used to sound the channel, which can cause measurement samples to be truncated or censored. If the information about the censored samples are not included in the estimation method, as in ordinary least squares estimation, it can result in biased estimation of both the pathloss exponent and the large scale fading. This can be solved by applying a Tobit maximum-likelihood estimator, which provides consistent estimates for the pathloss parameters. This letter provides information about the Tobit maximum-likelihood estimator and its asymptotic variance under certain conditions.Comment: 4 pages, 3 figures. Published in IEEE Wireless Communication Letter

    Alien Registration- Gustafson, Carl G. (Portland, Cumberland County)

    Get PDF
    https://digitalmaine.com/alien_docs/21877/thumbnail.jp

    NeuroTerrain – a client-server system for browsing 3D biomedical image data sets

    Get PDF
    BACKGROUND: Three dimensional biomedical image sets are becoming ubiquitous, along with the canonical atlases providing the necessary spatial context for analysis. To make full use of these 3D image sets, one must be able to present views for 2D display, either surface renderings or 2D cross-sections through the data. Typical display software is limited to presentations along one of the three orthogonal anatomical axes (coronal, horizontal, or sagittal). However, data sets precisely oriented along the major axes are rare. To make fullest use of these datasets, one must reasonably match the atlas' orientation; this involves resampling the atlas in planes matched to the data set. Traditionally, this requires the atlas and browser reside on the user's desktop; unfortunately, in addition to being monolithic programs, these tools often require substantial local resources. In this article, we describe a network-capable, client-server framework to slice and visualize 3D atlases at off-axis angles, along with an open client architecture and development kit to support integration into complex data analysis environments. RESULTS: Here we describe the basic architecture of a client-server 3D visualization system, consisting of a thin Java client built on a development kit, and a computationally robust, high-performance server written in ANSI C++. The Java client components (NetOStat) support arbitrary-angle viewing and run on readily available desktop computers running Mac OS X, Windows XP, or Linux as a downloadable Java Application. Using the NeuroTerrain Software Development Kit (NT-SDK), sophisticated atlas browsing can be added to any Java-compatible application requiring as little as 50 lines of Java glue code, thus making it eminently re-useable and much more accessible to programmers building more complex, biomedical data analysis tools. The NT-SDK separates the interactive GUI components from the server control and monitoring, so as to support development of non-interactive applications. The server implementation takes full advantage of data center's high-performance hardware, where it can be co-localized with centrally-located, 3D dataset repositories, extending access to the researcher community throughout the Internet. CONCLUSION: The combination of an optimized server and modular, platform-independent client provides an ideal environment for viewing complex 3D biomedical datasets, taking full advantage of high-performance servers to prepare images and subsets of associated meta-data for viewing, as well as the graphical capabilities in Java to actually display the data

    Tobit Maximum-likelihood estimation of Censored Pathloss Data

    Get PDF
    Pathloss is typically modeled using a log-distance power law with a large-scale fading term that is log-normal. However, the received signal is affected by the dynamic range and noise floor of the measurement system used to sound the channel, which can cause measurement samples to be truncated or censored. If the information about the censored samples are not included in the estimation method, as in ordinary least squares estimation, it can result in biased estimation of both the pathloss exponent and the large scale fading. This is solved by applying a Tobit maximum-likelihood estimator, which provides consistent estimates for the pathloss parameters. This technical report provides information about the Tobit maximum-likelihood estimator estimator and its asymptotic variance under certain conditions

    On mm-Wave Multi-path Clustering and Channel Modeling

    Get PDF
    Efficient and realistic mm-wave channel models are of vital importance for the development of novel mm-wave wireless technologies. Though many of the current 60 GHz channel models are based on the useful concept of multi-path clusters, only a limited number of 60 GHz channel measurements have been reported in the literature for this purpose. Therefore, there is still a need for further measurement based analyses of multi-path clustering in the 60 GHz band. This paper presents clustering results for a double-directional 60 GHz MIMO channel model. Based on these results, we derive a model which is validated with measured data. Statistical cluster parameters are evaluated and compared with existing channel models. It is shown that the cluster angular characteristics are closely related to the room geometry and environment, making it infeasible to model the delay and angular domains independently. We also show that when using ray tracing to model the channel, it is insufficient to only consider walls, ceiling, floor and tables; finer structures such as ceiling lamps, chairs and bookshelves need to be taken into account as well

    Polarimetric Wireless Indoor Channel Modelling Based on Propagation Graph

    Get PDF
    This paper generalizes a propagation graph model to polarized indoor wireless channels. In the original contribution, the channel is modeled as a propagation graph in which vertices represent transmitters, receivers, and scatterers, while edges represent the propagation conditions between vertices. Each edge is characterized by an edge transfer function accounting for the attenuation, delay spread, and the phase shift on the edge. In this contribution, we extend this modeling formalism to polarized channels by incorporating depolarization effects into the edge transfer functions and hence, the channel transfer matrix. We derive closed form expressions for the polarimetric power delay spectrum and cross-polarization ratio of the indoor channel. The expressions are derived considering average signal propagation in a graph and relate these statistics to model parameters, thereby providing a useful approach to investigate the averaged effect of these parameters on the channel statistics. Furthermore, we present a procedure for calibrating the model based on method of moments. Simulations were performed to validate the proposed model and the derived approximate expressions using both synthetic data and channel measurements at 15 GHz and 60 GHz. We observe that the model and approximate expressions provide good fit to the measurement data

    Wideband RCS reduction based on a simple chessboard metasurface

    Get PDF
    To avoid being detected by radar, it is necessary to reduce stealthy military platforms' radar cross section (RCS). The operation of overlaying the metasurface (MS) on the targets is a good solution. A simple chessboard MS structure that can achieve low RCS over a large bandwidth is proposed. Only one unit cell is used to construct the MS. First, the unit cell working in 0.5 and 1−λ modes is designed to achieve a stable phase difference of 180° for y- and x-polarized waves. Then, the unit cells and rotated ones are used to form a chessboard structure with different distributions. The compared results show that the chessboard MS with 2 × 2 quadrants can facilitate the widest 10 dB RCS reduction band of 111% and the largest RCS reduction. The proposed structure exhibits excellent RCS reduction even when irradiated by y- and x-polarized waves at an oblique incidence of 30°
    • …
    corecore